本文目录
- 欧拉公式是什么
- 复数中的欧拉公式是如何推导的
- 复数欧拉公式
- 欧拉公式是什么啊
- 欧拉公式揭示了复数域上的什么重要定理
- 四个欧拉公式有哪些
- sin和cos的欧拉公式 复数
- 欧拉公式具体是什么
- 利用欧拉公式展开复数
- 复数欧拉公式在高等数学中的应用
欧拉公式是什么
欧拉公式是指以欧拉命名的诸多公式。其中最著名的有,复变函数中的欧拉幅角公式,即将复数、指数函数与三角函数联系起来。拓扑学中的欧拉多面体公式。初等数论中的欧拉函数公式。欧拉公式描述了简单多面体顶点数、面数、棱数特有的规律,它只适用于简单多面体。常用的欧拉公式有复数函数e^ix=cosx+isinx,三角公式d^2=R^2-2Rr
,
物理学公式F=fe^ka等。
复变函数
e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。
欧拉公式
e^ix=cosx+isinx的证明:
因为e^x=1+x/1!+x^2/2!+x^3/3!+x^4/4!+……
cos
x=1-x^2/2!+x^4/4!-x^6/6!……
sin
x=x-x^3/3!+x^5/5!-x^7/7!……
在e^x的展开式中把x换成±ix.
(±i)^2=-1,
(±i)^3=∓i,
(±i)^4=1
……
e^±ix=1±ix/1!-x^2/2!∓ix^3/3!+x^4/4!……
=(1-x^2/2!+……)±i(x-x^3/3!……)
所以e^±ix=cosx±isinx
将公式里的x换成-x,得到:
e^-ix=cosx-isinx,然后采用两式相加减的方法得到:
sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.这两个也叫做欧拉公式。将e^ix=cosx+isinx中的x取作π就得到:
恒等式
e^iπ+1=0.这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数字联系到了一起:两个超越数:自然对数的底e,圆周率π,两个单位:虚数单位i和自然数的单位1,以及被称为人类伟大发现之一的0。数学家们评价它是“上帝创造的公式”
那么这个公式的证明就很简单了,利用上面的e^±ix=cosx±isinx。
那么这里的π就是x,那么
e^iπ=cosπ+isinπ
=-1
那么e^iπ+1=0
这个公式实际上是前面公式的一个应用。
分式
分式里的欧拉公式:
a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)
当r=0,1时式子的值为0
当r=2时值为1
当r=3时值为a+b+c
三角公式
三角形中的欧拉公式:
设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则:
d^2=R^2-2Rr
拓扑学说
拓扑学里的欧拉公式:
拓扑学 V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数。
如果P可以同胚于一个球面(可以通俗地理解为能吹胀而绷在一个球面上),那么X(P)=2,如果P同胚于一个接有h个环柄的球面,那么X(P)=2-2h。
X(P)叫做P的欧拉示性数,是拓扑不变量,就是无论再怎么经过拓扑变形也不会改变的量,是拓扑学研究的范围。
初等数论
初等数论里的欧拉公式:
欧拉φ函数:φ(n)是所有小于n的正整数里,和n互素的整数的个数。n是一个正整数。
欧拉证明了下面这个式子:
如果n的标准素因子分解式是p1^a1*p2^a2*……*pm^am,其中众pj(j=1,2,……,m)都是素数,而且两两不等。则有
φ(n)=n(1-1/p1)(1-1/p2)……(1-1/pm)
利用容斥原理可以证明它。
物理学
欧拉公式应用
众所周知,生活中处处存在着摩擦力,欧拉测算出了摩擦力与绳索缠绕在桩上圈数之间的关系。现将欧拉这个颇有价值的公式列在这里:
F=fe^ka
其中,f表示我们施加的力,F表示与其对抗的力,e为自然对数的底,k表示绳与桩之间的摩擦系数,a表示缠绕转角,即绳索缠绕形成的弧长与弧半径之比。
此外还有很多著名定理都以欧拉的名字命名。
复数中的欧拉公式是如何推导的
欧拉公式
4
(1)分数欧拉公式:
^ R /(AB)(AC)+ B ^ R /(BC)(BA)+ C ^转/(ca)条(cb)条
当r = 0,1,当公式具有值0
当r = 2的值的1
当r = 3时的值A + B + C
(2)复杂
通过e ^Iθ=COSθ+isinθ:
SINθ=(E ^Iθ-E-Iθ)/ 2I
COSθ= (E ^Iθ+ E ^Iθ)/ 2
此功能将两种不同的功能—指数和三角函数链接,被称为的数学“天桥”。
,当θ=π,电子^Iπ1 = 0,它是在数学最重要的E,I,π,1,0连接。
(3)三角形
让R表示三角形外接圆半径,r为半径的内切圆,心心脏的距离d外,然后:
D ^ 2 = R ^ 2 – 2RR BR /》多面体
v是顶点的数目,e是边数,f为的面数,
我+ F = 2-2P
p到(4)损失电网,2-2P欧拉数
P = 0多面体称为零级
p = 1的多面体多面体称为一流的多面体
复数欧拉公式
首先,在实数上我们良好地定义了exp(x),关键就是怎么把这个东西拓展到复数域中。在这里,我们用一个叫解析开拓的常用方法。
在实数域上,我们显然有:
exp(x)=1+x+x^2/2!+…+x^n/n!+…=sigma((x^n)/n!, n=0..infinity)
然后,我们在复数域上也令这个关系成立。这就得出了复数域上的指数函数。
为什么这样定义的指数函数在复数域上每一点都有定义呢?很简单,因为上面的级数对于任意x都是绝对收敛的。绝对收敛这个概念不仅仅适用于实数,还可以用于复数,甚至拓展到一般的赋范线性空间。
这里没怎么用到复分析,就是解析开拓这个名词是在复分析里边学的。
欧拉公式是什么啊
欧拉公式有4条
(1)分式:
a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)
当r=0,1时式子的值为0
当r=2时值为1
当r=3时值为a+b+c
(2)复数
由e^iθ=cosθ+isinθ,得到:
sinθ=(e^iθ-e^-iθ)/2i
cosθ=(e^iθ+e^-iθ)/2
(3)三角形
设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则:
d^2=R^2-2Rr
(4)多面体
设v为顶点数,e为棱数,是面数,则
v-e+f=2-2p
p为欧拉示性数,例如
p=0 的多面体叫第零类多面体
p=1 的多面体叫第一类多面体
等等
其实欧拉公式是有4个的,上面说的都是多面体的公式
欧拉公式揭示了复数域上的什么重要定理
1、
把5个最有特色的数0,1,i,e,π联系
e^(iπ) + 1 = 0
cosz=(e^iz+e^(-iz))/2
sinz=(e^iz-e^(-iz))/2i
2、
z = re^(iθ)
n次根z^(1/n)=r^(1/n)e^(iθ/n)
=r^(1/n)[cos(i(k+1)θ/n]+isin(k+1)θ/n]
3、
de’Moivre 公式
(cosx+isinx)^n = cos(nx)+isin(nx)
4、
留数定理,也有不少关系
只想到这些
很高兴能回答您的提问,您不用添加任何财富,只要及时采纳就是对我们最好的回报
。若提问人还有任何不懂的地方可随时追问,我会尽量解答,祝您学业进步,谢谢。
☆⌒_⌒☆ 如果问题解决后,请点击下面的“选为满意答案”
四个欧拉公式有哪些
四个欧拉公式:
(1)分式:a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)当r=0,1时式子的值为0当r=2时值为1当r=3时值为a+b+c
(2)复数由e^iθ=cosθ+isinθ,得到:sinθ=(e^iθ-e^-iθ)/2i cosθ=(e^iθ+e^-iθ)/2此函数将两种截然不同的函数-–指数函数与三角函数联系起来,被誉为数学中的“天桥”。当θ=π时,成为e^iπ+1=0它把数学中最重要的e、i、π、1、0联系起来了。
(3)三角形设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则:d^2=R^2-2Rr
(4)多面体设v为顶点数,e为棱数,f是面数,则v-e+f=2-2p p为亏格,2-2p为欧拉示性数,例如p=0的多面体叫第零类多面体p=1的多面体叫第一类多面体等等条莱垍头
sin和cos的欧拉公式 复数
欧拉定理:e^(ix)=cosx+isinx。其中:e是自然对数的底,i是虚数单位。
它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。
将公式里的x换成-x,得到:
e^(-ix)=cosx-isinx,然后采用两式相加减的方法得到:
sinx=[e^(ix)-e^(-ix)]/(2i),cosx=[e^(ix)+e^(-ix)]/2。
欧拉公式具体是什么
R+ V- E= 2就是欧拉公式。
在任何一个规则球面地图上,用 R记区域个 数 ,V记顶点个数 ,E记边界个数 ,则 R+ V- E= 2,这就是欧拉定理 ,它于 1640年由 Descartes首先给出证明。
后来 Euler(欧拉 )于 1752年又独立地给出证明 ,我们称其为欧拉定理 ,在国外也有人称其 为 Descartes定理。
扩展资料:
数学归纳法证明:
1、当 R= 2时 ,由说明 1,这两个区域可想象为 以赤道为边界的两个半球面 ,赤道上有两个“顶点” 将赤道分成两条“边界”,即 R= 2,V= 2,E= 2;于是 R+ V- E= 2,欧拉定理成立.。
2、设 R= m(m≥ 2)时欧拉定理成立 ,下面证明 R= m+ 1时欧拉定理也成立 。
由说明 2,我们在 R= m+ 1的地图上任选一个 区域 X ,则 X 必有与它如此相邻的区域 Y ,使得在 去掉 X 和 Y 之间的唯一一条边界后 ,地图上只有 m 个区域了。
在去掉 X 和 Y 之间的边界后 ,若原该边界两端 的顶点现在都还是 3条或 3条以上边界的顶点。
则该顶点保留 ,同时其他的边界数不变;若原该边界一 端或两端的顶点现在成为 2条边界的顶点 ,则去掉 该顶点 ,该顶点两边的两条边界便成为一条边界 。于 是 ,在去掉 X 和 Y之间的唯一一条边界时只有三种 情况:
1、减少一个区域和一条边界。
2、减少一个区 域、一个顶点和两条边界。
3、减少一个区域、两个顶 点和三条边界。
参考资料来源:百度百科——欧拉公式
利用欧拉公式展开复数
在直角坐标系中,e^(iθ)表示单位长,与x轴夹角为θ
它表示的复数对于为cosθ+isinθ
所以e的iθ次方等于cosθ+isinθ
复数欧拉公式在高等数学中的应用
首先,在实数上我们良好地定义了exp(x),关键就是怎么把这个东西拓展到复数域中。在这里,我们用一个叫解析开拓的常用方法。
在实数域上,我们显然有:
exp(x)=1+x+x^2/2!+…+x^n/n!+…=sigma((x^n)/n!,
n=0..infinity)
然后,我们在复数域上也令这个关系成立。这就得出了复数域上的指数函数。
为什么这样定义的指数函数在复数域上每一点都有定义呢?很简单,因为上面的级数对于任意x都是绝对收敛的。绝对收敛这个概念不仅仅适用于实数,还可以用于复数,甚至拓展到一般的赋范线性空间。
这里没怎么用到复分析,就是解析开拓这个名词是在复分析里边学的。
免责声明:本文由用户上传,如有错误请指正,如有侵权,请联系删除!